ARGOS REAL-TIME ANTENNA UPGRADE PROJECT

Bill Woodward, CLS America
Michel Guigue, CLS Toulouse
Yann Bernard, CLS Toulouse
TODAY’S PRESENTATION

• WHY UPGRADE THE CURRENT NETWORK?

• THE UPGRADE OBJECTIVE & APPROACH

• PLAN/SCHEDULE

• IMPACT TO DBCP
TODAY’S NETWORK – 60 STATIONS

SOUNDS LIKE A LOT – WHY UPGRADE IT?

• NON-UNIFORM & LIMITED MIX OF SATS THAT ARE RECEIVED – METOP/SARAL ARE NEEDED
• LOCATION/OPERATORS ARE NOT OPTIMUM
• DAYS IN OPERATION ARE NOT CONSISTENT
• % OF DATASETS RECEIVED vs. EXPECTED IS LOW
• DATA DELIVERY TIMES ARE VARIABLE AND NOT RELIABLE

“CREATE THE NETWORK WE NEED NOT JUST USE WHAT MIGHT BE AVAILABLE”
OBJECTIVE

IMPLEMENT AN OPTIMIZED AND RELIABLE GLOBAL NETWORK OF REAL-TIME ANTENNAS WHICH MINIMIZES THE DELIVERY TIME OF ARGOS PTT/PMT DATA
UPGRADE APPROACH

• UPGRADE A SUBSET OF EXISTING L-BAND ANTENNAS TO RECEIVE DATA FROM ALL SATELLITES CARRYING ARGOS (NOAA, METOP, SARAL)

• INSTALL NEW ANTENNAS AND/OR CONNECT TO OTHERS WHERE NEEDED

• CONDUCT SYSTEM STUDIES TO DEFINE CANDIDATE ANTENNAS – BUDGET LIMITED TO ~ 20
WHAT WAS CONSIDERED:

• LOCATION/AVAILABILITY OF EXISTING STATIONS

• EXISTING SATELLITES (6) + SARAL & METOP-B

• APPLICATIONS WITH SENSITIVE DATA DELIVERY TIMES

• GEOGRAPHIC DISTRIBUTION OF MAIN APPLICATIONS & AREAS REQUIRING PRIORITY COVERAGE

• EXISTING STATIONS WHICH QUALIFY FOR UPGRADING TO ADEQUATE DISH SIZE TO ENSURE LINK BUDGETS

• NEW SARAL REAL-TIME STRATEGY (last 100 minutes)
ANTENNA SELECTION

• REFINING ANTENNA CHOICES BY ANALYZING DELIVERY TIME PERFORMANCE OF UPGRADE SCENARIOS WITH CLS DEVELOPED SIMULATION TOOL

• TOOL CALCULATES THE AVERAGE TIME FOR A PLATFORM TO DELIVER ITS DATA AS A FUNCTION OF:
 – THE ARGOS SATELLITE CONSTELLATION (real parameters, simulated SARAL)
 – THE REAL ANTENNAS OF THE NETWORK AND THEIR CHARACTERISTICS

• RESULTS DISPLAYED ON A 5° X 5° GRID
ARGOS AVERAGE REVISIT TIME
CURRENT 6 SATELLITE CONSTELLATION
A 6-satellites as exists today or a potential 8-satellites constellation (2012-2015 period) insure optimized revisit time around 1 hour for equatorial latitudes and around 30 min above 60° of latitude.

The target limit of 2h of data disposal time to users is almost covered for all applications (~95% with the 6-satellites constellation today, ~100% with the potential 8-satellites constellation for the 2012-2015 period). Furthermore, the HRPT stations upgrade plan, currently in progress, would significantly improve the amount of Argos data made available to users within 1h (goal of ~50%)
UPGRADE SCHEDULE

• UPGRADE 3 CLS STATIONS:
 [LIMA, HATOYAMA, LANNION] Completed

• UPGRADE 9 ‘NON-CLS’ EXISTING STATIONS:
 [REUNION, MONTERY, MIAMI, BALI] End of 2011
 [RESOLUTE BAY, OMAN, ATHENS, LAS PALMAS, PAPEETE] End of 2012

• PROCURE AND INSTALL 2 NEW STATIONS:
 [CAPETOWN] Late 2011
 [ASCENSION ISLAND] During 2012

• UPGRADE 3 EXISTING AUSTRALIAN STATIONS:
 [DAVIS, CAPE FERGUSON, WELLINGTON] During 2012

DBCP 27 SCIENTIFIC AND TECHNICAL WORKSHOP
GENEVA SWITZERLAND
SEPTEMBER 26, 2011
SELECTED ANTENNAS

YELLOW - CLS STATIONS (3)
RED - New Antennas (2)
ORANGE - Upgraded by BOM/ES&S (3)
WHITE - Existing Stations (9)

1 Spare
MARCH 2011

- ADDING OMAN STATION
- IMPROVING HYDERABAD AND REUNION STATION PERFORMANCE
- INCREASED METOP-A HRPT COVERAGE (more stations + descending and ascending orbits)
JUNE 2011

- 3 UPGRADED CLS STATIONS
- 2 ANTARCTIC STATIONS: MCMURDO & HALLEY
REDUCTION IN MEAN DISPOSAL TIME BETWEEN MARCH 2011 AND JUNE 2011
END 2012

- UPGRADE PROJECT COMPLETED
- 2 SATELLITES ADDED: METOP B & SARAL
THE SOUTHWEST PACIFIC
EXCEPTED DATA TIMELINESS BEFORE INSTALLING AN EASTER ISLAND ANTENNA

DBCP 27 SCIENTIFIC AND TECHNICAL WORKSHOP
GENEVA SWITZERLAND
SEPTEMBER 26, 2011
EXPECTED DATA TIMELINESS AFTER INSTALLING EASTER ISLAND ANTENNA
BEFORE EASTER ISLAND ANTENNA

AFTER EASTER ISLAND ANTENNA

DBCP 27 SCIENTIFIC AND TECHNICAL WORKSHOP
GENEVA SWITZERLAND
SEPTEMBER 26, 2011